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Abstract 
 

 
 
 

This experiment characterizes antimony-based, multiple quantum-well, types-I 

and -II, semiconductor samples designed for laser applications.  The samples emit light in 

the 3-5-µm range to exploit an atmospheric transmission window, making them ideal for 

infrared (IR)-seeking missiles countermeasures.  Photoluminescence (PL) spectra were 

collected and yielded bandgap (Eg) dependence-on-temperature relationships.  The type-I 

sample was found to follow the Varshni equation, while the type-II samples showed a 

rise with temperature in a portion of the curve that should be linear according to the 

Varshni equation.  The type-II samples followed the Varshni equation well at higher 

temperature.  The PL study indicated that the type-I sample had better efficiency than the 

type-II samples, and that there is some change in efficiency with the waveguide nature of 

the sample.  Carrier temperatures (Tc) were derived from the PL study, all the samples for 

which Tc was derived operated in the optical phonon regime.  The PL data was compared 

to the “FEMB” computer model and some correlation between the two in recombination 

energy was seen.  A time resolved photoluminescence (TRPL) experiment was conducted 

using the frequency upconversion technique.  The experiment clearly found the 

upconverted signal, but there was a systematic error that prevented any further analysis of 

the data.   
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OPTICAL CHARACTERIZATION OF ANTIMONY-BASED, TYPES-I AND -II, 

MULTIPLE QUANTUM-WELL SEMICONDUCTOR STRUCTURES FOR MID-

INFRARED LASER APPLICATIONS 

 
 

1. Introduction 
 
 
 

Semiconductor lasers have applications in communications, spectroscopy, 

environmental detection, biomechanical devices, and infrared (IR) countermeasure 

devices.  The small size, reliability of lasing and ease of use make these lasers ideal for 

military uses. The intensity of emitted radiation currently limits the uses of 

semiconductor laser devices. The purpose of this experiment is to characterize a set of 

semiconductor materials.  Sample characteristics are determined by optically exciting a 

sample, which causes it to emit radiation, and collecting the intensity of the luminescence 

as a function wavelength (photoluminescence).  By varying the excitation power or 

sample temperature, different characteristics of a semiconductor material are determined.  

The photoluminescence (PL) results are compared to results provided by the femb 

computer code.  PL provides time-averaged characteristics; by using a wave mixing 

technique (upconversion), temporal characteristics can be determined (time-resolved 

photoluminescence).   

The samples in this experiment are antimony-based (Sb) structures.  The 

atmosphere has transmission windows in the 3-5-µm region, which are exploited by 
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current IR missile technology.  An optical countermeasure to these devices should 

propagate at similar wavelengths.  Figure 1.1 below shows the correlation between III-V 

semiconductor material composition and transmission windows in the atmosphere.  The 

solid lines connecting the binary compositions indicate where a ternary compound would 

emit at the wavelength indicated along the upper x-axis or at the energy specified on the 

lower x-axis.  Following the gray line up to the chart of transmission windows, the 

window exploited by a certain material composition is indicated.  Antimony-based 

structures exploit the necessary atmospheric transmission windows to counter IR 

missiles, as indicated in Figure 1.1, specifically the 3.5 to 4.2 µm and 4.4 to 5.4 µm 

transmission windows.  
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Figure 1.1. Atmospheric transmission windows and the material compositions that emit 
in those wavelengths (Marciniak, 1995:1-3) 
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1.1 Motivation 
 

In Operation Dessert Storm, 80% of fixed wing aircraft losses were due to IR 

missiles (Pike, 2000).  Since the Gulf War, 80-90% of aircraft losses have been due to IR 

missiles (Rockwell, 2002).  An IR missile launched one mile away gives a pilot 

approximately four seconds to deploy countermeasures; this is not enough time for a 

human to react and get away.  Due to the current IR missile threat, the Air Force is 

generally flying its aircraft above 15,000 ft., which is outside the range of IR guided 

surface-to-air missiles (SAM’s) (Erwin, 2002).  These altitudes reduce the munitions 

accuracy and diminish ground reconnaissance and target detection capabilities (Rockwell, 

2002).   

The large proliferation of both vehicle launched and man-portable (MANPAD) IR 

missiles has increased the need for IR missile counter measures.    Bill Taylor, of the Air 

Force Research Laboratory’s Electro-Optical Technology Division, has said that by 2005 

IR missiles can be expected to defeat flares nearly 100% of the time (Green, 1999).  The 

growing threat and the increasing ability of IR missiles to defeat countermeasures require 

a new defense to be created.   

Presently, a Large Aircraft Infrared Countermeasures (LAIRCM) system is being 

developed by the Air Force. The requirement of the system is to protect against man-

portable, shoulder-fired, and vehicle-launched IR-guided missiles.  “The LAIRCM 

system will be installed on C-17, C-130 and KC-135 aircraft. There are five basic 

elements to this system: a Control Indicator Unit (CIU), a Missile Warning Subsystem 

(MWS), a Pointer/Tracker Transmitter (P/T), a Countermeasures Processor (CP), and a 

Laser jam source subsystem. Up to three laser jammers will be installed on every aircraft 
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(Christie, 2002).” With the development of semiconductor lasers, the size and power 

requirements of the three laser components could be dramatically reduced, making it 

possible to place similar units on fighter aircraft, as well as reducing the cost of the 

system.  The development of semiconductor lasers makes it possible for lives to be saved 

and the mission to be executed. 

 

1.2 Overview 
 

This experiment characterizes a set of type-I and type-II multiple-quantum-well 

(MQW), Sb-based structures.  It compares a tight and diffuse waveguide type-II MQW 

structure with a photoluminescence (PL) study. Finally, a time-resolved 

photoluminescence (TRPL) study is attempted.  The PL study yields bandgap-energy (Eg) 

dependence on temperature (T), carrier temperatures (Tc), and each samples optical-to-

optical efficiency.  The results of the PL study prompted a modeling effort to determine if 

a commercially available femb code would predict the observed results.  A TRPL 

experiment yielded results that clearly showed the experiment was functioning, but the 

signal-to-noise ratio of the results was not high enough to further analyze the data.  An 

alignment problem is believed to have caused this.  Future work is suggested after the 

results of this experiment have been presented and analyzed.  
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2. Background 
 

This chapter will explain the basic characteristics of energy bands, types of carrier 

recombination, and type-I and type-II semiconductor quantum-well (QW) structures.  It 

will also discuss previous work performed in similar areas of research.  Energy bands are 

determined by the structure of the material, and they in turn determine the energy 

absorbed and emitted by the material.  Recombination occurs when an excited electron 

loses its excess energy and fills a vacant state in a lower (valance) energy band.  

Radiative recombination is one of three possible types of recombination; Shockley-Read-

Hall and Auger are the other two.  Type-I and type-II semiconductors are different QW 

structures used to enhance carrier confinement and optimize radiative recombination.  

The most fundamental of all of semiconductor characteristics is the energy band. 

 

2.1 Energy Bands 
 

The atoms present in a semiconductor determine energy bands.  A band is formed 

as atoms are moved closer to one another.  The highest discreet energy levels in a single 

atom merge to form a range of allowable energy states, identified as bands.  Figure 2.1 

illustrates this process for silicon.  The 2P and 2S energy levels in an individual atom 

combine with the same energy levels in other atoms and broaden.  At a separation of 11 

lattice constants, the formation of bands begins to appear.  The lattice constant is the 

equilibrium interatomic spacing of the crystal lattice (McKelvey, 1993: 63).   
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Figure 2.1. As atoms in a lattice are pushed closer together the energy levels in the 
individual atoms begin to form energy bands (Zeghbroeck, 2002). 

 
 
 

The formation of the crystal lattice structure is dependent on the type and strength 

of bonds formed between atoms.  The lattice structure determines the bandgap energy, 

conduction band energy, valence band energy and any impurity band energies.  Typical 

diagrams, such as Figure 2.2, are used to illustrate band energies. 

In a semiconductor, the energy levels of the conduction and valence bands are 

determined at temperature (T) equal to 0 K.  The bottom of the conduction band is 

defined as the lowest unfilled energy level at T= 0 K; the top of the valance band is the 

highest filled energy level at T = 0 K.  The difference between these two energy levels is 

the bandgap energy (Eg).   Eg determines the wavelength of absorbed light because an 

incoming photon with energy lower than the bandgap travels through the material, where 
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as an incoming photon at a higher energy is absorbed, losing its energy by generating free 

carriers in the material. 

Conduction Band 
E 

 Eg 

Valence Band 

k 

 

Figure 2.2. Typical energy diagram; Eg= bandgap energy 

 
 
 

2.2 Free Carriers 
 

When an electron is excited into the conduction band, there is an unfilled state left 

in the valance band.  The number of electrons in the valance band is on the order of 1023; 

because of the large number of electrons in the valance band, it is simpler to count the 

number of vacancies in the band.  These vacancies are given the name “holes.”  Free 

carriers are holes in the valance band and electrons in the conduction band.   

 

2.3 Recombination 
 

All things in nature tend towards lowest energy; therefore, in a given amount of 

time, the excited electrons in a crystal lattice will “fall” to lowest energy.  When an 
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electron from a higher band fills a hole in a lower band, its energy must be given off.  

The process of an electron filling a hole and giving off energy is called recombination.  

The type of recombination is dependent on the way in which the electron gives off its 

energy.  

 

2.3.1 Shockley-Read-Hall Recombination 
 

Shockley-Read-Hall recombination occurs when an electron gives its energy to 

the crystal lattice in the form of a phonon.  This process occurs when an electron relaxes 

to an intermediate energy level caused by an impurity and then relaxes to its lowest 

energy in the valence band.  This process involves one carrier; it is illustrated in Figure 

2.3. 

 
 

Figure 2.3. In Shockley-Read-Hall recombination, electrons lose their energy, in the form 
of phonons to the crystal lattice with the assistance of an impurity energy level. 
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2.3.2 Radiative Recombination 

Radiative recombination occurs when a carrier loses its energy to a photon.  The 

electron combines directly with a hole in the valence band in a single step two carrier 

(electron and hole) process.  The energy given off is usually the same as the material Eg.  

This process is shown in Figure 2.4. 

 

 

 
 

Figure 2.4: In radiative recombination, an electron losses its energy in the form of a 
photon with energy ∆E = hν. 

 
 
 

2.3.3 Auger Recombination 
 

Auger recombination occurs when an electron in the conduction band recombines 

with a hole in the heavy-hole (HH) valance band but instead of losing its energy to a 

photon, it gives its energy to an electron in the split-off (SO) valance band, which is 

promoted to a hole state in the HH band.  This is type of Auger recombination is called 
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conduction, heavy-hole, heavy-hole, split-off (CHHS) Auger recombination and is a two-

step, three-carrier process.  The probability of CHHS Auger recombination is based on 

how close the difference between the SO and HH bands is to the bandgap energy.  Figure 

2-7 describes this process.  The probability of Auger recombination is related to the 

energy difference (∆E) between the SO and HH-bands and its relation to Eg.  If the 

difference between the SO band and HH band energies are close to Eg, then the 

probability of Auger recombination goes up.   

 

 

 

HH Band

Split Off Band

e-

e-

Conduction Band 

E 

k

Figure 2.5. In Auger recombination an electron in the conduction band recombines with a 
hole in the heavy-hole (HH) valance band but instead of losing it’s energy to a photon, it 
gives its energy to an electron in the split-off (SO) valance band, which is promoted to a 
hole state in the HH band. 
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2.4 Material Structures 
 

Semiconductor materials can be grown into several different structure types.  By 

alternating the thickness and type of a layer, quantum well structures can be grown into a 

semiconductor material.  Quantum wells are formed when a high-bandgap material is 

grown next to a low bandgap material, and then a second layer of high-bandgap material 

finishes the well.  The quantum wells grown into a sample have similar properties to the 

single quantum well or “particle in a box” solutions.  The transitions seen in quantum-

well semiconductors should be between the lowest allowed energy levels in the quantum 

wells.  Quantum well structures increase carrier confinement because they are grown 

such that the lowest allowed quantum-well energy level is lower than the lowest energy 

level of the material on either side of the well, this forces free carriers to collect in the 

bottom of the well.  This process increases carrier confinement and that, in turn, increases 

radiative transitions in a semiconductor.  When multiple quantum-well layers are grown 

into a material, it is a multiple-quantum-well structure (MQW).  Type-I structures have 

the quantum wells for the electrons and the quantum wells for the holes in the same 

material, or lined up over one another spatially, as shown in Figure 2.6. 

 
 

 
Figure 2.6. Type-I MQW structure 
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Type-II MQW structures have the quantum wells for the electrons and the quantum wells 

for the holes in adjacent materials, which creates spatially offset quantum wells as shown 

in Figure 2.7 

 

 
Figure 2.7. Type-II MQW structure 

 
 
 
 

2.5 Previous Work 
 

Previous Air Force Institute of Technology (AFIT) students, McKay and Gorski, 

described some of the samples in the photoluminescence (PL) study in work in their 

Master’s theses.  In those documents, the upconversion technique, described later in 

Chapter 3, was used to determine recombination coefficients, time-dependent carrier 

temperatures, and other material characterization parameters.   In addition to 

characterization with the upconversion technique, simple PL data is presented and was 

obtained to identify the peak emission wavelength of the samples.  This experiment uses 

the same techniques described in McKay’s and Gorski’s theses (McKay, 2000 and 

Gorski, 2002).  Batacharia describes many of the techniques that can be used to obtain PL 
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data and what some of the characteristics that can be seen in the data are.  Marciniak 

presents PL data and techniques in his dissertation (Marciniak, 1995).  His dissertation 

also contains analysis similar to that given in this experiment for bulk materials.  All of 

these documents were used heavily in the formulation of experiments performed and in 

the analysis of the data taken. 
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3. Experiment 
 

Photoluminescence (PL) is the result of electron and hole recombination.  The 

excited electron gives off energy as it decays to a lower energy state according to 

Equation (Eq) (3.1).   

 

E
hc
∆

=λ                        (3.1) 

 

The wavelength, λ, of the emitted light is directly proportional to Planck’s constant, h, 

and the speed of light in a vacuum, c, and inversely proportional to the energy, ∆E, given 

up by the electron when it combines with a hole.  A PL study requires, at a minimum, a 

way to excite the sample and a way to collect and measure the light emitted by the 

sample as a result of excitation.  A time-resolved photoluminescence (TRPL) study 

requires a non-linear crystal as well as the previously mentioned components.  This 

chapter describes the samples characterized, the equipment used for both PL and the 

TRPL experiments, the layout of that equipment, and the theory behind the techniques 

used. 

 

3.1 Samples 
 

The samples in this experiment are a combination of type-I and type-II QW Sb-

based semiconductor materials.  In addition to the differences in QW structure, diffuse 
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and strong waveguide structures are examined.  The compositions of the sample materials 

are given Table 3.1.  Figure 3.1 is a diagram of the active regions of the samples. 

 

Table 3.1. Compositions of the sample set. 

 
Sample Composition Absorber Structure Cladding 

B  InAs0.935Sb0.065/In0.85Al0.15As0.0.9Sb0.1   Type-I  none 

R0-62  InAs/Ga0.65In0.35Sb  In0.15Ga0.85As0.08Sb0.92  Type-II  Al0.90Ga0.10As0.08Sb0.92

R2-43  InAs/Ga0.65In0.35Sb In0.15Ga0.85As0.08Sb0.92  Type-II  none 

G Ga0.15In0.08Sb/InAs/Ga0.85In0.15Sb/InAs In0.15Ga0.85As0.08Sb0.92  Type-II  none 

R1-73  InAs/Ga0.60In0.40Sb    Type-II  none 
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A tight waveguide has a low index of refraction cladding layer grown on both 

sides of the higher index of refraction active region.  The active region of a material is the 

location of the recombination.  For these samples the active region is composed of the 

quantum well structures. 

 

3.2 Layout 
 

Figure 3.1 shows the table layout for the experiment.  An argon-ion (Ar+) laser is 

used to pump a mode locked Ti:sapphire laser that is used to excite the sample.  The PL 

path, shown by a solid line, passes through an empty crystal mount/rotation stage and is 

collected by a ½-m spectrometer.  The sum frequency generation (SFG) signal, shown by 

a long dashed line, is generated in a nonlinear KTiOAsO4 (KTA) crystal and collected in 

a ¾-m spectrometer.  

 

3.3 Photoluminescence  
 

The vertically polarized beam, which shall be called the PL beam, exits the beam 

splitter and is directed through a neutral density filter and onto to a 30-cm delay stage.  

The delay stage is a gold-coated retro-reflector on a sliding mount that is controlled by 

the upconversion computer program.  The sliding mount becomes important to the 

upconversion experiment and will be discussed in detail in Section 3.3.  The PL beam is 

then focused onto the sample mounted in the cryostat with a spot size of 58.5 +/- 0.20 µm 

(Gorski, 2001:22).   
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Mode Loicked

Ti:Sapphire

Coherent-Mira 900

λ=809 nm

1.4 W Pulsed

Ar+ Spectra Physics 10.4 W CW at 335.5 Amps

½ m SPEX Spectrometer

A=300 grooves/mm

InSbDetecror
Polarizing Beam Splitter

λ/2

Vacuum Chamber/ 
Cryostat

Off-Axis Parabolic Mirrors

(Au Coated)

Neutral Density 
Filter Wheel

Retroreflector

Delay Stage

PMT

¾ m  SPEX Spectrometer

A=1200 grooves/mm

Crystal Mount/ Rotation 
Stage

Ti:Sapphire

PL

SFG

Periscope

Beam Block

lens

Figure 3.2. A Ti:sapphire beam is used as the sample excitation source. It is split 
into two paths at a polarizing beam splitter. The vertically polarized PL beam then travels 
through a delay stage before exciting a sample. The luminesence is then sent to a 
periscope and on into a ½ m spectrometer for PL, or into the KTiOAsO4 (KTA) crystal 
for upconversion.  After the beam splitter the horizontally polarized Ti:sapphire is mixed 
with the PL in the KTA to generate a sum-frequency generated (SFG) signal which is 
then directed into a ¾ m spectrometer and photon counter. 
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The gold-coated off-axis parabolic mirror then collects the luminescence from the sample 

and collimates it.  The luminescence is directed toward a second gold-coated off-axis 

parabolic mirror and focused onto a crystal mount/rotation stage.  When performing the 

PL experiment, there is no crystal in the crystal mount/rotation stage.  A CaF2 lens 

collects the luminescence of the sample and collimates it so that it can be vertically raised 

by a periscope and focused by a second CaF2 lens onto the entrance slits of a ½-m SPEX 

spectrometer.  At the exit slit of the ½-m spectrometer, the luminescence is focused by a 

CaF2 lens onto a single element indium antimonide (InSb) detector to detect incident 

photons.  The InSb detector will detect emissions in the 2- 5.56-µm range. 

Eq (3.2) determines the resolution of the ½-m spectrometer.  

 

mf
aW

=∆λ      (3.2) 

 

Resolution, ∆λ, of a spectrometer is directly proportional to the grooves per mm of the 

grating, a, the slit width, W, and is inversely proportional to the order of the diffraction 

observed, m, and the focal length of the spectrometer, f.  Both the spectrometer resolution 

and the wavelength step size between subsequent data points determine the resolution of 

the experiment.  The larger of the two is the resolution of the experiment, and is 5 nm or 

6 nm for the experiment depending on the sample in question.  The PL beam is chopped 

at 200 MHz so that a Stanford Research Systems SR 850 DSP lock-in amplifier can 

amplify the signals from InSb detector.   

The PL experiment yields data in the form of intensity as a function of 

wavelength.  By varying the excitation power incident upon the sample or the sample 
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temperature, one can characterize carrier temperature, Eg, and the sample’s optical-to-

optical efficiency.  

 

3.4 The Upconversion Technique 
 

The time evolution of the PL signal can be determined using Time-Resolved 

Photoluminescence (TRPL).  There are several techniques, streak cameras and frequency 

upconversion being among the most used, that can be used to get TRPL data.  Each 

technique is used to investigate both carrier relaxation and carrier transport.  Using fast 

detectors and fast electronics gives these properties directly.  Streak cameras can provide 

sub-picosecond resolution in a single-shot operation and ~10 ps resolution in synchroscan 

mode for low-level repetitive signals (Shah, 1999).  This experiment uses the frequency 

upconversion technique because streak cameras are not available detect mid-IR signals. 

Even if they were, the resolution of the frequency upconversion technique is much higher 

than that of a streak camera.  The excitation laser pulse is the ultimate limit to the 

resolution of the frequency upconversion technique.   

As mentioned in Section 3.3, the ultrafast excitation laser beam is separated into 

two portions by the polarizing beam splitter.  The first portion of the excitation beam 

stimulates a sample and produces PL, which is focused onto a nonlinear crystal, KTA.  

The horizontally polarized portion of the excitation beam (pump beam) travels a similar 

path length and is also focused into the nonlinear crystal for mixing with the PL signal.  

Varying the path length of the beams relative to one another allows the nonlinear mixing 

to occur with various temporal portions of the PL signal, thereby yielding the time 
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development of the PL signal (Figure 3.2).  This information provides for the 

characterization of recombination and carrier transport.   

 

 

E xcita tion  Pu lse
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Figure 3.3. The PL and excitation laser pulses mix to form a third sum-frequency 
generated (SFG) signal.  (a) shows the PL signal in time. (b) depicts the way varying the 
path length of the PL and excitation pulses relative to one another allow the PL beam to 
be examined at different times. 
 

 

 

The sample is stimulated in the same manner as the PL experiment.  The 

frequency upconversion occurs at the crystal mount/ rotation stage.  The mount now 

holds a KTA crystal exhibiting second-order nonlinearity.  Further information on the 

crystal can be found in Gorski’s thesis (Gorski, 2002).  After the PL beam is focused on 

the KTA, the beam is blocked so it is not collected in the ¾-m spectrometer used to 
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collect the SFG signal.  The pump beam traverses a similar distance to the PL beam and 

is then focused through a lens to a spot size of 39.1 +/- 0.15 µm (Gorski, 2001:22) onto 

the KTA crystal, and then blocked after the crystal to prevent it from being collected in 

the ¾-m spectrometer.  There are also filters for the laser wavelength in the SFG signal 

path to the spectrometer and over the entrance slit to the spectrometer to further reduce 

any chance of collecting the laser beam in the ¾-m spectrometer.  The SFG signal is 

collimated by a lens and then raised to the level of the spectrometer by a periscope.  The 

signal enters the spectrometer and is measured with a photo multiplier tube (PMT). 

The SFG signal is only produced if the PL and pump beams overlap in space.  To 

accomplish this alignment, a 50-µm pinhole is placed in the crystal mount/ rotation stage 

and both beams are directed through it to ensure this overlap.  In order to find the 

temporal beginning of the PL signal, a process to find zero-path-length (ZPL) difference 

between the two beam paths from the beam splitter to the cryostat/ rotation stage is 

performed.  At ZPL, the pump pulse is aligned in time with the beginning of the PL 

signal.  This point is found after the beams are overlapped in space by exchanging the 50-

µm pinhole for a LIO3 crystal.  A visual check for this point is a purple point of light 

generated by mixing the pump beam with the PL excitation laser beam reflected off the 

sample mount and directed along the PL path to the LIO3 crystal.   

There are two conditions to generate this signal, the first of which is phase 

matching, mathematically defined by Eq (3.3).   

 

pumpPLup kkk
rrr

+=      (3.3) 

 

 21 
 



upk
r

 is the propagation vector of the ZPL or SFG signal and is the vector sum of the PL 

beam propagation vector, PLk
r

, and the pump beam propagation vector pumpk
r

.  By solving 

Eq (3.3), one can also obtain the angles at which the PL and pump beams must intersect 

each other in the KTA crystal and the angle at which the KTA should be cut.  The 

derivations of this information and more detail about the upconversion experiment can be 

found in Gorski’s thesis (Gorski, 2002).  The angle of the crystal face relative to normal 

to the X-Z plane used here is 43°, and the beams should intersect in the crystal at an angle 

of 20° from the normal to the X-Z plane (Gorski, 2002).   

The second condition for ZPL or SFG signal generation is a frequency matching 

condition given in Eq (3.4), where ωup is the frequency of the SFG signal, ωPL is the 

frequency of the PL pulse, and ωpump is the frequency of the pump beam.  By 

manipulating Eq (3.4) using the relationship between frequency and wavelength, Eq 

(3.5), one can obtain the wavelength of the ZPL signal using Eq (3.6).   

 

         pumpPLup ωωω +=                            (3.4) 

 

π
ωλ
2

=c      (3.5) 

 

pumpPLup λλλ
111

+=                                                    (3.6) 
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The wavelength of the SFG or ZPL signal, λup, is dependent upon the wavelength of both 

the PL signal and the pump beam, represented by λPL and λpump, respectively.  The 

upconversion technique produces a curve of the intensity as a function of the delay time 

between the PL and pump beams.   

 

3.5 Excitation Source 
 

Both PL and upconversion require a way to excite the sample.  A 10.2 W 

continuous wave (CW) Spectra Physics argon-ion (Ar+) laser pumped the mode-locked 

Ti:sapphire.  In upconversion, the pulse width of the excitation source determines the 

temporal resolution of the experiment.  The excitation source for this experiment was a 

Coherent Mira 900 mode-locked Ti:sapphire laser.  It operated at 1.4 W average power 

and produced ~120 fs pulses that were used to excite the sample.  The laser has an 

average wavelength of 810 nm and has a repletion rate of 76 MHz.  The sample is excited 

every 13.2 ns by mode-locked pulses.  In the photoluminescence study, the laser is 

chopped at 200 MHz in order to provide a signal for the lock-in amplifier.  The pulse 

width used in the upconversion experiment is measured using an INRAD Model 5-14BX 

Autocorrelator and checked using the experiment equipment.  The ZPL signal is the point 

where the two portions of the initial excitation pulse are recombined in the nonlinear 

crystal.  By changing the delay between the pulses, a representation of how the excitation 

pulse develops in time is generated just as the representation of the development of the 

PL signal.  The autocorrelator does this in a “black box” unit and the delay stage in the 

PL beam path combined with the ¾ m spectrometer, tuned to the ZPL wavelength, 

performs this experiment in the exact same way.  The pulse width of the Ti:sapphire laser 
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was measured to be 125 fs.  The output value of the both of the lasers was constant from 

day to day which allowed the experiment to be run at greater time efficiency. 
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4. Data and Analysis 
 

This chapter will present the data collected for each sample.  The data was 

collected versus temperature or excitation power.  Effective carrier temperatures will be 

extracted from intensity versus wavelength data as a function of excitation power data.  

In addition, gain saturation will be examined, as will Eg variances with temperature and 

excitation power.  PL observations will then be compared to a commercially available 

femb computer model for semiconductor structures.  Finally, the results of a TRPL study 

will be presented.   

 

 4.1 Photoluminescence  
 

Taking the PL data at the same excitation power and varying the sample 

temperature can determine the effects of temperature on a material.  The most noticeable 

effect of temperature is usually a change in Eg.  Figure 4.1 shows the PL data as a 

function of temperature for sample G and is indicative of the data for the experiment 

sample set.  Figure 4.2 shows the PL data for sample R0-62.   An Eg change is indicated 

by a change in the position of the peak intensity.  Both Figure 4.1 and Figure 4.2 clearly 

show the change in Eg with temperature.  The reduction in signal in Figure 4.2 between 

~2.85 eV and ~2.95 eV is the result of atmospheric, primarily CO2, absorption.  The 

energies/ wavelengths affected by this absorption can be seen in Figure 4.3.   
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Figure 4.1. Sample G intensity as a function of energy at varying temperatures.  The 
resolution in temperature is 4K.  The wavelength resolution is 5nm and the energy 
resolution is 8.6meV.  This plot clearly shows that Eg varies as a function of temperature. 
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Figure 4.2. Sample R0-62 intensity as a function of energy at varying temperatures.  The 
temperature resolution is 4K.  The wavelength resolution is 5nm and the energy 
resolution is 8. meV.  This plot clearly shows that Eg varies as a function of temperature.  
Also shown is the atmospheric absorption in the 2.8-2.95eV range.  
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Figure 4.3. PL spectra showing the effects of a N2 purge on reducing the CO2 absorption 
at the wavelengths of interest (Marciniak, 1995: 5-19). 
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4.1.1 Temperature Variation 
 

In bulk semiconductors, the bandgap changes as a function of temperature 

primarily due to a change in lattice constant with temperature.  The effects of temperature 

on Eg follow the Varshni equation, Eq (4.1).  The Varshni equation is dependent upon the 

Eg at 0K, denoted as Eg(0), and the empirical Varshni parameters α and β.   

 

T
TETE gg +

+=
β
α 2

)0()(      (4.1) 

Figure 4.4 shows the Eg dependence on temperature for bulk semiconductor material 

(Marciniak, 1995).  

Plotting the radiative transitions in a QW sample at various temperatures indicates 

whether they also follow the Varshni equation. Figure 4.4 shows the Eg dependence on 

temperature over the range 8- 140 K for the sample set used here.  Comparing the data 

collected with the InAs and InAs0.05Sb0.95 curves leads to the conclusion that both type-I 

and type-II samples appear to follow the Varshni equation.  Type-I materials follow the 

Varshni equation much more strongly than type-II materials.  The rise and then decrease 

of Eg with temperature in type-II materials prompted a modeling effort described later in 

this chapter.  There is also an apparent discrepancy between the tight and diffuse 

waveguide and modeling will be used to analyze this. 
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Figure 4.4. Temperature-dependence of the energy gap for epitaxial indium-arsenide-
antimonide (InAs1-xSbx) was measured.  The dashed lines are a least squares fit of the 
Varshni equation to the data (Marciniak, 1995: 6-21). 
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Figure 4.5. Comparison of the Varshni equation to Eg-as-a-function-of-T measurements 
in type-I and type-II semiconductor material.  The type-I sample is represented by a 
hollow triangle and the type-II materials are represented by filled in symbols.  The 
dashed lines are curves of the Varshni parameters in bulk semiconductor material, 
specifically InAs and InAs0.05Sb0.95.   
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4.1.2 Varying Excitation Power 
 

Varying the excitation power and fitting the high energy side of the intensity-

versus-energy/ wavelength curve with an exponential curve will yield time averaged 

carrier temperatures (Tc) as shown in Figure 4.6 (a).  The Tc plots are shown in Figure 

4.7.  The Tc points are linearly fit to extract phonon energies from the line slopes. 

Another way to extract Tc is to plot the intensity at a given energy data as a function of 

temperature on a semi-log plot and fit the high energy side of the curve with a straight 

line as shown in Figure 4.6 (b).  The slope of the line gives the Tc according to Eq (4.2).  

With simple manipulation Tc can be extracted with the same relation from the 

exponential. 

 

em
k

T b
c log

−
=      (4.2) 

 

As seen in Eq (4.2), carrier temperature is dependent upon the slope of the line (m) and 

the Boltzman constant (kb), as well as the constant –log e.  Tc indicates how an excited 

electron gives off excess energy as it relaxes to the lowest point in the conduction band.   

A higher Tc implies electrons are being excited higher into the conduction band.  

The higher an electron is in the conduction band the more energy it must give up before it 

can recombine with a hole.  A higher amount of energy being transferred corresponds to 

the higher energy longitudinal optical (LO) phonon.  Less energy being transferred 

corresponds to a lower energy acoustical phonon.   Comparing the slope of the Tc curve 

with a line having slope –kB/hνLO, where νLO is the LO-phonon energy (~29meV for InAs 

and InAsSb compositions), will indicate which type of phonon the electron gives its 
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energy to (Marciniak, 1995: 7-43).  When the slope of the Tc curve is approximately 

equal to –kB/hνLO, the majority of the energy that the electrons transfer to the lattice is to 

the LO-phonon.  If the slope is less than the LO-phonon energy, the sample is in a mixed 

regime of acoustical and optical phonons, or just the acoustical phonon regime.  

 shows Shah’s curve of Tc versus excitation power (Shah, 1978:45).  The straight line 

is a line with a slope equal to the LO-phonon energy in GaAs.  The majority of the data 

points lying upon the line indicates that the GaAs is in the optical phonon regime.  If the 

majority of the points corresponded to a line with a slope equal to the acoustical phonon 

the GaAs would be in that regime.  The samples in this experiment all lie on a line 

corresponding to the high excitation power portion of Figure 4.8.   

Figure 

4.8

Figure 4.7 shows the carrier temperature as a function of excitation power for the 

samples from which it could be extracted.  Sample G has a phonon energy (hνph) of 100 

meV, R0-62 has an hνph of 81.29 meV, and sample R1-73 has a hνph of 50 meV.  These 

values indicate that the carrier cooling is in the optical phonon regime but that the phonon 

electron interaction is most likely not the primary method of electron energy transfer.   

PL data for the samples from which Tc could not be extracted are shown in Figure 

4.9.  The linearity of the high-energy side of the sample B curve, Figure 4.9 (a), prevents 

Tc extraction for that sample.   Tc of sample R2-43, Figure 4.9 (b), could not be extracted 

because emissions on the high-energy side of the curve are absorbed by CO2 and there is 

an extremely low signal-to-noise ratio. 
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Figure 4.6. Exponential fitting to the high energy side of the intensity as a function of 
energy curve is used to calculate the Tc of sample G.  Tc can also be extracted from a 
linear fit to a semi-log plot.  The data from Sample G illustrates how the semi-log line fit 
is a more imprecise method due to the noise at the end of the collected spectrum and the 
slope’s dependence on where the endpoints are chosen. 
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Figure 4.7. Inverse carrier temperature as function of excitation power for samples R0-
62, R1-73 and G. The relative linearity of these plots indicates that the free carriers are 
giving off energy to LO-phonons. The dashed lines are a least squares linear fits to the 
data points with slopes -0.00106, -0.00393, and -8.59635 x 10-4 for samples R0-62, R1-
73 and G respectively.  The slopes of these lines indicate how the free carriers transfer 
energy to the lattice. 
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Figure 4.8. 1/Tc as a function of excitation intensity for GaAs at 2 K. The points are 
experimental data and the solid line corresponds to a slope of -hν0/kB where hν0 is the 
phonon energy. (Shah,1978:45) 
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Figure 4.9.  (a) Shows how Tc could not be extracted from sample B because of the 
linearity that dominates the high energy side of the curve.  (b) Tc could not be extracted 
from R2-43 because of the low signal to noise ratio. 
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The radiative efficiency of each sample is obtained by integrating the area under 

the PL intensity-versus-excitation-photon-energy curve, as a function of excitation 

power.  For the R0-63 and R1-43 curves, the region absorbed by atmospheric CO2 was 

accounted for by fitting the curve to an exponential and using values of the exponential 

fit in those regions.  Figure 4.10 shows integrated emission as a function of excitation 

power for all the samples.  A higher slope indicates a higher efficiency.  Sample B is 

clearly more efficient than the type-II samples.  The tight and diffuse waveguide samples 

have the same active region and should therefore have the same efficiency.  In Figure 

4.11, the data for the tight waveguide (R0-62) and the diffuse waveguide (R2-43) 

coincide fairly well for excitation powers from 75-700 mW.  The leveling off of R2-43 

with higher excitation power indicates saturation in a region where R0-62 is still linearly 

rising.  A slightly smaller quantum-well width in R2-43 might result in it becoming 

saturated more quickly than R0-62, and some discrepancy in the well widths is an 

expected result of the growth process. 

 

4.2 Modeling 

If two materials have the same active region, they should exhibit the same 

emission properties provided they are both at the same temperature and excited with the 

same excitation source.  The fact that sample R0-62 has an AlGaAsSb cladding should 

not influence the emission because this layer is a dielectric and will not affect the 

excitation photons.   
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Figure 4.10. Integrated emission as a function of excitation power for all samples.  The 
sample temperature is 80 K.  The resolution of the excitation power is 2 mW. 
 

 

 

 39 
 



0 100 200 300 400 500 600 700 800 900
0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

 

 

In
te

gr
at

ed
 E

m
is

si
on

 (a
.u

.)

Excitation Power (mW)

 R2-43
 R0-62

 

Figure 4.11.  Plot of the efficiency curves for the tight waveguide sample, R0-62, and the 
dilute waveguide sample, R2-43, with nominally the same active regions.  Samples are 
both at 80 K and excitation power resolution is 2 mW.  
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The cladding layer likewise should not affect the thermal properties of the active region.   

What causes the differences in efficiency and Eg as a function of temperature in R0-62 

and R2-43 then?  Modeling this active region is one way of trying to understand what is 

happening.   

A commercially available modeling code written by Ram- Mohan was used for 

this effort.  To utilize the code, the material parameters of ternary and quaternary 

compositions were linearly interpolated from those of the binary materials.  The code 

itself and Band parameters for III-V compound semiconductors and their alloys, by 

Vurgaftman, were the primary sources of the parameters for the binary compositions.  

The values for Eg and lattice constant were altered to represent the effects of temperature 

where appropriate.  These values were obtained from the Mathematica code given in 

Appendix A.   The difference between linear interpolation and an altered interpolation 

method, utilizing Eq (4.3), is shown in Figure 4.12.   Eq (4.3) is derived from assumption 

that Eg3 (T) = x (Eg1 (T)) + (1-x)(Eg2 (T)) where x is the mole fraction of one of the binary 

constituents.  By creating a table of Eg3 points at various temperatures and fitting those 

points with a Varshni equation, the empirical Varshni parameters for the ternary or 

quaternary compositions were determined.  For samples R0-62 and R1-43 

α = -0.000401165 and β = 143.27. 
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Figure 4.12 (a) shows that the difference between linear interpolation and the altered 

method for the ternary composition is a constant.  Figure 4.12 (b) illustrates that the 
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difference is much more pronounced in a quaternary composition.  For this reason, the 

altered interpolation was used for the input file into the computer code. 

The input for the femb code included composition of a ternary compound created 

from binary compositions, as well as the sample temperature of the modeled ternary 

sample.  The model produced a table of band offsets used to generate band diagrams, like 

Figure 4.13, and lists of eigenvalues used to compare predicted possible transition 

energies with luminescence energies in the data. 

The variation of lattice constant with changing temperature on the band diagram 

is negligible when compared to variations with temperature of Eg.  Figure 4.14 shows an 

expanded view of the upper right corner of the conduction band well as a function of 

temperature.  The slight bowing of the Eg-as-a-function-of-T curve in Figure 4.5 in type-

II materials was initially thought to be a result of well-width variations produced from 

lattice constant variations with temperature, but the negligible change of quantum well 

width with temperature makes this unlikely.    

The model predicts an Eg-as-a-function-of-T curve that follows the Varshni 

equation.  Figure 4.15 shows the modeled curve along with the actual data.  The predicted 

curve is closer to the observed R2-43 data in energy, but neither R2-43 nor R0-62 follow 

the prediction closely.  The discrepancy between the model and the data might be 

accounted for with well-width variations introduced in the growth process, but was 

untested in the modeling.  The cause of the differences might also be a result of linear 

interpolation of the material parameters.  Appendix A shows the large discrepancy in 

linearly interpolated and actual Varshni parameters.  Other parameters might change as 

drastically with temperature as the Varshni and Eg parameters. 
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(b) 

Figure 4.12.  (a) shows the difference in the ternary composition between a linear 
interpolation of the Varshni parameters and an altered interpolation of the Varshni 
parameters given by Eq (4.3).  (b) shows the difference in the quaternary between a linear 
interpolation of the Varshni parameters and an altered interpolation of the Varshni 
parameters given by Eq (4.3) 
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Figure 4.14.  Diagram for samples R0-62 and R2-43 of the upper right (highest energy, 
highest relative distance) corner of the conduction band well as a function of temperature. 
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Figure 4.15. The hollow circles are the predictions from the femb code for Eg(T) for 
sample R0-62 and R2-43.  The solid shapes are experimental data points for R0-62 and 
R2-43.  The dashed line is an experimental curve for bulk InAsSb. 
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4.4 TRPL  
 

The TRPL experiment did not work well enough to extract information.  

However, as shown in Figure 4.16, the attempt to achieve frequency upconversion with 

this experiment was successful.  The rise in intensity that corresponds to 0 ps on the 

curve is the point at which the PL and the pump beam are mixing at their maximums.  

The decrease in intensity at increasing time delay is indicative of the decay of the PL 

pulse as free carriers recombine and their number decreases.  Unfortunately, the signal-

to-noise ratio for this experiment could never be improved from that shown in this figure.  

A possible explanation for this error is misalignment somewhere on the optics table.   
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Figure 4.16. TRPL curve that demonstrates that upconversion was achieved.  The 
appearance of noise at 700 ps delay could not be removed. 
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5. Conclusions and Recommendations 
 
 

The current and rising IR-missile threat is forcing the Air Force to change its 

tactics and operations in order to protect aircrews.  This same threat is also creating the 

requirement for a lightweight IR-missile counter-measure system.  IR missiles work in 

the 3-5-µm transmission window and any laser to defeat these missiles must exploit this 

same window.  Semiconductor lasers are lightweight, efficient and reliable, making 

semiconductor lasers an ideal solution to the IR-missile problem.   Antimony-based 

MQW semiconductor structures can be fabricated into lasers that will propagate in the 

required atmospheric transmission window.  By characterizing these samples with time- 

averaged PL experiments, computer modeling to predict their behavior and TRPL 

experiments to characterize their temporal performance, better structures can be found.  

This will lead to making an IR-counter-measure laser device that can be mounted on 

fighter-sized aircraft a reality. 

This experiment performed a PL study to characterize Eg response to temperature.  

Bulk semiconductor material follows the Varshni equation and the Eg response to 

temperature can be predicted with it.  Type-I structures were shown to follow the Varshni 

equation well, whereas, type-II structures deviated from the Varshni equation with a rise 

and then a decrease in Eg as temperature increased.  This rise was seen in all the type-II 

samples and led to a modeling effort of type-II structures.  Also, when examining Eg 

response to temperature, the effects of a waveguide cladding were examined.  The sample 

with the cladding, which corresponds to the tight waveguide, differed from the sample 

without the cladding, which corresponds to the dilute waveguide.  The expectation was 

that the two materials would exhibit the exact same characteristics because the active 
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regions are the same.  The active region is the only location were any affects that effect 

luminescence should be taking place.   

Varying the excitation power incident upon the sample during the PL study 

provided information on Tc and radiative efficiency.  The carrier temperature could only 

be extracted from two of the five samples.  Low signal-to-noise ratio and a non-

exponential curve prevented the other two samples from being characterized in this 

manner.  The Tc values that were extracted both indicated a higher phonon energy than 

the published optical phonon energy of ~29 meV, leading to the conclusion that both 

samples were in the optical phonon regime.   

Efficiency was determined by integrating the area under the PL curve as 

excitation power was varied.  The integrated emission-as-a-function-of-excitation-power 

curves indicated that the type-I sample is more efficient than the type-II samples.  The 

efficiencies of the tight-waveguide and diffuse-waveguide samples were different.  The 

diffuse waveguide was saturated in a temperature regime where the tight waveguide was 

still linearly efficient.   

The difference in efficiency combined with the difference of the type-II structures 

from the Varshni equation led to the utilization of a commercially available model.  The 

model was set up with material parameters linearly interpolated from binary materials.  

The highly temperature-dependent variables of Varshni parameters, Eg, and lattice 

constant were found using Mathematica given code in Appendix A.  The discrepancies in 

the type-II material from the Varshni equation were not a consequence of changing lattice 

constant with temperature, or a result of changing bandgap according to the model.  A 

better understanding of the model would be very useful to future work. 
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TRPL resulted in a working frequency upconversion experiment that could not be 

optimized enough to gather useful data.  There appears to be a systematic error that 

indicates an alignment problem.  This alignment issue was not solved in the time allotted 

for TRPL.  

Improved alignment of the TRPL experiment and further understanding of the 

computer model would both be possible with more time.  The computer model should be 

examined with a single quantum well to establish the variance of the input parameters.  

Progression to a type-I MQW sample would provide insight into the way the model 

accounts for interaction between electron and hole wells.  Finally, the model would be 

understood enough to make excellent use of its computational powers to examine type-II 

materials.  The cladding layers should be modeled with the type-II structures to see if the 

model predicts any of differences observed experimentally that may be caused by the 

cladding layer.  Thickness of the sample layers should also be varied in the model to 

determine if differences in variations inherent in the growth process dramatically affect 

the performance of a sample.  Figure 5.1 shows the recommended variations to the 

model’s input parameters.  The variations are combinations of changes of 1-2 monolayers 

in well-width, up to a 10% variation in valance band offset for the quaternary 

composition, and up to a 10% variation in the quaternary composition.    The straight 

arrows are the parameters that are well known, the dashed arrows are the recommended 

variations for future analysis.  The model should be used to run “test” materials before 

they are grown to ensure that only the best samples are actually examined in the 

laboratory.    
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An optimized upconversion experiment would provide insight into the temporal 

response of the PL signal.  This can be accomplished by proper alignment.  The 

recombination coefficients could then be determined and the time-dependent Tc could be 

compared to the time-averaged Tc obtained during PL.  This would provide insight into 

thermalization processes occurring in the sample material.   

The goal of this experiment was to characterize a set of type-I and type-II 

samples, and provide insight into which materials would best meet the needs of the Air 

Force for use in an IR-missile countermeasure system.  The effects of temperature and 

excitation power were determined, and a model of a type-II structure was examined.  A 

step closer to the end product was made, but more work is needed to get to a defensive 

capability in the field.  
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Appendix A 

<<Graphics̀ Legend̀  
Mohan's Data 
GaSb:= 9.812, 23.844,.76,0,13.4,4.7, 6.0,3.18, .13, −7.5,

−.8, −2, −4.7,0,8.842, 4.026,4.322,14.510−3, 0,570,4.8,
6.09593, −.03, .41710−3, 140  =

GaSbo= GaSb@@1DD+
GaSb@@24DD∗772

GaSb@@25DD +77  
0.823394 
InSb:= 9.235,23.154,.81,0, 34.8,15.5, 16.5,14.76, .15,

−6.94, −.36, −2, −4.7, 0, 6.847,3.735, 3.111,16.510−3, 0,
474,4.9,6.47937,0,.3210−3, 170=  

InSbo= InSb@@1DD+
InSb@@24DD∗772

InSb@@25DD +77  
0.242681 
GaAs:= 91.5194, 22.521,.341,0,6.98,2.06, 2.933, 1.2, .04,

−7.17, −1.16, −2, −4.8, 0,12.21, 5.66, 6, 11.310−3, 0, 748,
4.67, 5.65325, −.8,.540510−3, 204=  

GaAso= GaAs@@1DD+
GaAs@@24DD∗772

GaAs@@25DD +77  
1.5308 
Building the Ternary 
InGaSb@x_D:= Table@HInSb@@iDD+HHGaSb@@iDD −InSb@@iDDL∗xLL,

i,1,25  8 <D
Ternary:= InGaSb .84@ D  
Ternary 80.71968, 23.7336, 0.768, 0, 16.824, 6.428, 7.68, 5.0328, 0.1332,

−7.4104, −0.7296, −2, −4.7, 0, 8.5228, 3.97944, 4.12824,
0.01482, 0, 554.64, 4.816, 6.15728, −0.0252, 0.00040148, 144.8<  

Building the Quaternary 
InGaAsSb@y_D:= Table@HTernary@@iDD+HHGaAs@@iDD −Ternary@@iDDL∗yLL,

i,1,25  8 <D
Quaternary:= InGaAsSb 0.08@ D  
Quaternary 80.783658, 23.6366, 0.73384, 0, 16.0365, 6.07856,
7.30024, 4.72618, 0.125744, −7.39117, −0.764032, −2,
−4.708, 0, 8.81778, 4.11388, 4.27798, 0.0145384, 0,
570.109, 4.80432, 6.11696, −0.087184, 0.000412602, 149.536<  

Plotting the Linear Interpolation of the Ternary 
Eg@T_D :=Ternary@@1DD −

Ternary@@24DDT2
Ternary 2@@ 5DD +T  

Plot E@ g@ D 8 <DT , T,0, 300  
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 Graphics  
Eng@T_D :=GaSbo.84+InSbo.16−

i .16InSb@@24DDT2
InSb 25 +T

+
.84GaSb@@24DDT2
GaSb 25 +T

y{  k @@ DD @@ DD
Plot@8Eng@TD, Eg@TD<, 8T, 0, 300<,
PlotStyle→ 8RGBColor@1,0,0D, Dashing@80.05,0.05<D<,
AxesLabel→ 8"Temperature HKL","Energy HeVL"<,
PlotLegend→ 8"Adjusted", "Linear"<, LegendPosition→ 8.2,.1<,
LegendShadow→ None, LegendSize→ .5,.5  8
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<D

 Graphics  
Finding the ctual a n  b Values for the Ternary  A   a d
Data3 =Table T, En@8 g@ D< 8 <DT , T,0,300,5  
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880, 0.73048<, 85, 0.730412<, 810, 0.730218<, 815, 0.729909<,820, 0.729496<, 825, 0.728989<, 830, 0.728395<, 835, 0.727722<,840, 0.726976<, 845, 0.726163<, 850, 0.725289<, 855, 0.724357<,860, 0.723373<, 865, 0.72234<, 870, 0.721261<, 875, 0.72014<,880, 0.718979<, 885, 0.717781<, 890, 0.716549<, 895, 0.715284<,8100, 0.713988<, 8105, 0.712664<, 8110, 0.711313<,8115, 0.709937<, 8120, 0.708537<, 8125, 0.707114<,8130, 0.70567<, 8135, 0.704206<, 8140, 0.702723<, 8145, 0.701221<,8150, 0.699703<, 8155, 0.698168<, 8160, 0.696617<, 8165, 0.695052<,8170, 0.693472<, 8175, 0.69188<, 8180, 0.690274<, 8185, 0.688656<,8190, 0.687027<, 8195, 0.685386<, 8200, 0.683735<, 8205, 0.682074<,8210, 0.680402<, 8215, 0.678722<, 8220, 0.677032<, 8225, 0.675334<,8230, 0.673628<, 8235, 0.671913<, 8240, 0.670192<, 8245, 0.668462<,8250, 0.666726<, 8255, 0.664983<, 8260, 0.663233<, 8265, 0.661477<,8270, 0.659715<, 8275, 0.657947<, 8280, 0.656174<, 8285, 0.654395<,
290, 0.652611 , 295, 0.650821 , 300, 0.649027  8 < 8

<<Statistics̀ NonlinearFit̀  
< 8 <<

NonlinearFitAData3, HGaSbo.84+InSbo.16L −
αT2

β +T
, 8T<, 8α, β<E

 
0.73048−

0.000401165T2

143.274+T  
Ternaryo:= 0.73048; 
PlotA9Eng@TD,0.7304795608358365̀ −

0.0004011649845616561̀ T2

143.27414819504622̀ +T
=,8T,0,300<E  
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 Graphics  

Finding the a and b Values for the Quaternary 
Energyg@T_D :=Ternaryo.92+GaAso.08−i.920.000401165T2

143.274+T
+
.84GaAs@@24DDT2
GaAs 25 +T

y
 k @@ DD {

Data4 :=Table@8T, Energyg@TD<, 8T,0,300,5<D  
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NonlinearFitAData4, HTernaryo.92+GaAso.08L −
αT2

β +T
, 8T<,8α, β<E  



0.794506−
0.000817475T2

171.682+T  
f@T_D:= 0.7945059486120997̀ −

0.0008174746783505516̀ T2

171.68239833077624̀ +T  
Q@T_D:= Quaternary@@1DD −

Quaternary@@24DDT2
Quaternary 25 +T@@ DD  

Dimensions Quaternary@ D  
25  8 <

Redefining the Quaternary Input File 
Plot@8f@TD,Q@TD<, 8T,0,300<,
PlotStyle→ 8RGBColor@1,0,0D, Dashing@80.05,0.05<D<,
AxesLabel→ 8"Temperature HKL","Energy HeVL"<,
PlotLegend→ 8"Adjusted", "Linear"<, LegendPosition→ 8.2,.1<,
LegendShadow→ None, LegendSize→ .5,.5  8

50 100 150 200 250 300
Temperature HKL

0.65
0.675

0.725
0.75
0.775

Energy HeVL
Linear

Adjusted

 

<D

 Graphics  
InGaAsSbo= 80.794506,23.636592000000004̀ , 0.73384̀ , 0,

16.036479999999997̀ , 6.0785599999999995̀ , 7.30024̀ ,
4.726176̀ , 0.12574400000000002̀ , −7.391168̀ , −0.764032̀ ,
−2, −4.708̀ , 0, 8.817776̀ , 4.1138848̀ , 4.2779808̀ , 0.0145384̀ ,
0,570.1088̀ , 4.80432̀ , 6.116957968̀ , −0.087184̀ , 0.000817475,
171.682 ;<  

Lattice Constant Variation with Temperature 
GaSb 
T must beinput inCelcius for thecodetoworksoa

conversionfromTkelvin toTcelcius must bemadefirst. Thea1-

a4 variables areconstants tocorrect thelatticeconstant " a "as the
temperaturechanges.Laticeconstant isgiveninangstroms.  

t= 8,10,12,20,30,40, 50,60,70,80,85, 100,120,140 ;  8
T:= t−273.16;  

<
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a0= 6.095882;
a1= 3.496310−5;
a2= 3.345610−8;
a3= −4.630910−11;
a4= 2.636910−14;  
a T_ := a0+a1T+a2T2+a3T3+a4T4  @ D
GaSb= a T  @ D86.08996, 6.08997, 6.08998, 6.09003,
6.09012, 6.09021, 6.09033, 6.09045, 6.09059,
6.09075, 6.09083, 6.0911, 6.09149, 6.09194<  

InAs 
The a and InAs0 variables are constants to correct the lattice constant "a" as the 
temperature changes. T is input in Kelvin.  Lattice constant is given in angstroms. 
α = 4.5210−6H∗K−1∗L;
InAs0= 6.0583 ∗Ang∗ ; H L
InAs@T_D:=

InAs0
E298.15α

 EαT

 
InAs= InAs t  @ D86.05036, 6.05041, 6.05047, 6.05069,
6.05096, 6.05124, 6.05151, 6.05178, 6.05206,
6.05233, 6.05247, 6.05288, 6.05342, 6.05397<

n   is put in K

 
InSb 
Lattice constant is give  in angstroms. T  in elvin. 
InSb@T_D:= 6.47937+H6.481−6.4785L 

HT−298.15L
73  

InSb= InSb t  @ D86.46943, 6.4695, 6.46957, 6.46984,
6.47019, 6.47053, 6.47087, 6.47121, 6.47156,
6.4719, 6.47207, 6.47258, 6.47327, 6.47395<  

Lattice Constant of the Sample 
Linear interpolation will be made from the values calculated above.   Lattice constant is 
given in angstroms. 
InGaSb@x_D:= Table@InSb@@iDD∗x+GaSb@@iDD ∗H1−xL,

i,1,14  8 <D
This is the ternary that makes up the wells. 
Ternary= InGaSb .35  @ D86.22277, 6.22281, 6.22284, 6.22297,
6.22314, 6.22332, 6.22352, 6.22372, 6.22393,
6.22415, 6.22426, 6.22462, 6.22511, 6.22564  <

This is the quaternary that makes up the absorber. 
InGaSb= InGaSb .08  @ D86.12032, 6.12033, 6.12035, 6.12042,
6.12052, 6.12064, 6.12077, 6.12091, 6.12107,
6.12124, 6.12133, 6.12161, 6.12203, 6.1225<  
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InGaAsSb@x_D:= Table@InGaSb@@iDD∗x+InAs@@iDD ∗H1−xL,
i,1,14  8 <D

Quaternary= InGaAsSb .92  @ D86.11472, 6.11474, 6.11476, 6.11484,
6.11496, 6.11509, 6.11523, 6.11538, 6.11555,
6.11573, 6.11582, 6.11612, 6.11655, 6.11702  <

Materials Paramet s as a Function of Temperature er
TInAs= Table InAs i 2∗7, i,1, 14  @ @@ DDê 8 <D821.1763, 21.1765, 21.1766, 21.1774,
21.1784, 21.1793, 21.1803, 21.1812, 21.1822,
21.1832, 21.1836, 21.1851, 21.187, 21.1889  <
TTernary= Table Ternary i 2∗8, i,1, 14  @ @@ DDê 8 <D824.8911, 24.8912, 24.8913, 24.8919,
24.8926, 24.8933, 24.8941, 24.8949, 24.8957,
24.8966, 24.8971, 24.8985, 24.9005, 24.9026<  
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